¿Cómo se originan las células tumorales?

detecciondecancerenguatemalamylab

El proceso por el cual las células normales se transforman en cancerosas se denomina carcinogénesis. La comprensión de este proceso se logró principalmente por el desarrollo de técnicas de estudio genético. Mediante estas, se estableció que la transformación progresiva de células normales a derivados altamente malignos se originaba en alteraciones en el material genético (mutaciones). Estas mutaciones le confieren a una célula la capacidad de dividirse a una tasa mayor que su cohorte y generar una descendencia que conserva esta mutación (clones). Posteriormente, las células hijas acumulan subsecuentes y diversas mutaciones que permite generar distintos clones. Estos presentan mayores capacidades de sobrevida y crecimiento, ventajas proliferativas respecto de su contraparte normal que permite generar un clon neoplásico persistente. Normalmente, las células del sistema inmune son capaces de eliminar a estas células tumorales, en un proceso denominado inmunovigilancia tumoral. Sin embargo, algunos de estos clones pueden adquirir nuevas capacidades que les permiten evadir estos mecanismos de control y se desarrolla una neoplasia.

El rol de las alteraciones genéticas en la carcinogenesis fue puesto de manifiesto al descubrir en el genoma humano, genes homólogos a genes retrovirales relacionados previamente con el desarrollo de tumores. En células humanas normales estos genes se denominaron protooncogenes y se relacionan con el crecimiento y proliferación de las células normales. Cuando se encuentran mutados se denominan oncogenes y su mutación es de tipo dominante, es decir, sólo es necesario que uno de los alelos sufra una mutación para que la proteína que codifica, gane funcionalidad. Esto generalmente se traduce en aumento de sobrevida y proliferación.

Sin embargo, estos no son los únicos genes que explican el desarrollo tumoral. La descripción por parte de Knudson, de un modelo de 2 hits en el desarrollo del retinoblastoma asociado a la mutación del gen RB1, llevó indirectamente al descubrimiento de los genes supresores de tumores, que controlan la proliferación, reparación celular y apoptosis (muerte celular). Knudson describió que en individuos afectados por retinoblastomas se produce una primera mutación en la línea germinal (primer hit) que inactiva uno de los alelos del gen RB1, dejando el otro alelo funcional, en un estado de heterocigosis, lo que disminuye a 50% la cantidad de proteína funcional. Para que se genere un tumor, debe ocurrir una segunda mutación somática en el alelo normal de RB1 (segundo hit) que lleva a la pérdida de la expresión de la proteína. Por lo tanto, para que se desarrolle la enfermedad, ambos alelos deben estar mutados, por lo que la mutación es de tipo recesiva. En este caso, las mutaciones de los genes supresores de tumores se traducen en una pérdida de su función, de las proteínas que codifican y por lo tanto, una falla en los mecanismos de control y reparación internos de la célula, permitiendo su proliferación y crecimiento descontrolados, además de la acumulación de nuevas mutaciones. El mecanismo por el cual se pierde la copia normal del gen se ha denominado pérdida de heterocigosis o LOH (por su nombre en inglés: Loss Of Heterozygocity) que es la principal forma de silenciamiento de genes supresores de tumor. Las mutaciones que explican la LOH son variadas y generalmente afectan grandes segmentos cromosómicos, por lo que se pueden pesquisar mediante técnicas moleculares que detectan la pérdida de marcadores cromosómicos aledaños al gen de interés, en particular de secuencias denominadas microsatélites. En general, un tumor con alta incidencia de LOH se relaciona con un pronóstico desfavorable.

Se presume que en una célula normal ocurren diariamente alrededor de 20.000 eventos que dañan el ADN y cerca de 10.000 errores de replicación. Las células poseen mecanismos complejos y a veces redundantes para la reparación de alteraciones o daño en el ADN, en los que están involucrados los genes de reparación del ADN. Existen alrededor de 153 genes que participan directamente en la reparación del ADN, cuyos principales mecanismos incluyen la reparación de mal pareamiento (o missmatch), reparación por escisión de base o nucleótido, unión de extremos no homólogos y recombinación homóloga. Algunos ejemplos de estos genes son BRCA1 y 2 (relacionados con el cáncer de mama y ovario), y MSH2, MLH1 y MSH6 (relacionados con cáncer colorrectal hereditario no poliposo). Cuando ocurren mutaciones en estos genes, la disfunción de las proteínas que codifican hace a las células más sensibles a agentes que dañan el ADN y a la adquisición y acumulación de nuevas mutaciones que favorecen la carcinogenesis. Algunos individuos son portadores de mutaciones heterocigotas en estos genes, lo que se asocia a una mayor susceptibilidad de desarrollar distintos tipos de cáncer.

Las mutaciones de los genes responsables de la carcinogenesis pueden ser heredadas o ser adquiridas de novo (o mutaciones somáticas) generalmente producto de la exposición a sustancias del ambiente (carcinógenos) o agentes biológicos (virus oncogénicos), o ser heredadas. En las últimas dos décadas se han descrito más de 50 síndromes de susceptibilidad a cáncer de alta penetrancia, ligados a la herencia de mutaciones en genes específicos. A pesar de que la prevalencia de estas mutaciones es baja, en la clínica ha representado un gran avance en términos de la introducción de estrategias preventivas a través de la evaluación de familias de alto riesgo.

Para que estas mutaciones iniciadoras o promotoras de tumores logren persistir en una célula y dar origen a un clon tumoral, a nivel de la célula y su microambiente deben darse dos eventos fundamentales, que son comunes a todos los tipos tumorales: la inestabilidad genómica que favorece la adquisición de mutaciones y la inflamación tumorigénica.

Inestabilidad genómica y mutaciones
La presencia y acumulación de las mutaciones responsables de la progresión tumoral está favorecida por un estado de inestabilidad genómica en las células tumorales. Esta es una característica común de la gran mayoría de los tumores que acelera la acumulación de cambios genéticos. Comúnmente, la inestabilidad genómica se manifiesta como grandes aberraciones cromosómicas y cambios en la ploidia, aunque también pueden observarse pequeños cambios a nivel nucleotídico, con inserciones, deleciones o sustituciones de nucleótidos. Las aberraciones cromosómicas ocurren temprano durante la transformación maligna, mientras que la inestabilidad genómica promueve la adquisición de capacidades que favorecen la progresión tumoral.

En células normales existen varios mecanismos que controlan la acumulación de mutaciones que ocurren de manera espontánea: la detención del ciclo celular, la reparación del ADN y la eventual destrucción de una célula muy dañada, mediante apoptosis. En este proceso participan las proteínas de los genes reparadores del ADN y los genes supresores de tumor y en particular, dentro de estas últimas, cumple un rol fundamental la proteína p53, denominada por esta importante función, el guardián del genoma. En general, las células tumorales acumulan mayor cantidad de mutaciones debido a que la tasa de mutaciones en ellas es mayor, producto de una mayor sensibilidad a agentes mutagénicos y/o por fallas en uno o más puntos de la maquinaria de control de la integridad genética ocasionadas por mutaciones en genes supresores de tumor o reparadores del ADN, por lo que la célula defectuosa no es destinada a senescencia o apoptosis.

Existen ciertas condiciones hereditarias que favorecen el desarrollo de mutaciones. En el síndrome de Lynch, los pacientes heredan genes reparadores del ADN mutados. Como producto de la falla en estas proteínas, las secuencias génicas no son preservadas correctamente durante la replicación y se generan nuevos fragmentos microsatélites, lo que genera un estado de inestabilidad microsatelital (MSI), la que puede ser pesquisada como marcador. Estos pacientes presentan un status basal de mutaciones en sus células que puede predisponerlas al desarrollo de diversos tipos de tumores (colon, endometrio, ovario, estómago, entre otros).

Concomitante con la falla en los mecanismos de control, la pérdida del ADN de los telómeros (secuencias de ADN localizadas en los extremos de los cromosomas) es otra fuente de inestabilidad genómica, lo que explica alteraciones en el cariotipo de las células tumorales como amplificación o deleción de segmentos de cromosomas.

A pesar de que las mutaciones varían entre distintos tipos de tumores, su cantidad y presencia en el genoma tumoral ha demostrado que la inestabilidad genómica es inherente a los tumores. Esta finalmente, aumenta la probabilidad de que ocurran mutaciones en oncogenes que generan las capacidades que mejoran su sobrevida.

Inflamación tumorigénica
Los tejidos normales del organismo están compuestos por distintos tipos de células. En el caso de los tumores, interactúan con las células cancerosas un conjunto de células que colaboran al crecimiento tumoral, dando el soporte funcional y nutricional, estableciendo lo que se ha denominado el microambiente tumoral. Dentro de estas, se encuentran fibroblastos anormales, células endoteliales y del sistema inmune innato y adaptativo.

Las células del sistema inmune son las principales responsables de la inmunovigilancia tumoral y eliminación de los clones tumorales. Sin embargo, durante este proceso se produce un estado de inflamación crónica mediado principalmente por macrófagos y mastocitos que infiltran el tumor y que producen factores que promueve el crecimiento tumoral en todas sus etapas (18). Por una parte, la inflamación promueve la iniciación tumoral al generar un estrés genotóxico, que favorecen nuevas mutaciones; participa en la promoción al inducir la proliferación tumoral y a la progresión tumoral al incrementar la producción de nuevos vasos sanguíneos (angiogenesis) alrededor del tumor y la invasión tisular al favorecer la extravasación celular, lo que facilita el desarrollo de metastasis. Los factores generados por las células inmunes como factores proangiogénicos y de crecimiento, enzimas modificadoras de la matriz extracelular y otras señales son capaces de inducir las capacidades de las células tumorales y se han descrito como eventuales blancos terapéuticos.

 

Fuente:
World Health Organization.
World health statistics.
World Health Organization